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We study the structure of space-filling bearings (SFB) and A,pollonian packings 
(A_P) by determining the scaling behavior of the density distribution of points 
where the circles touch each other. Application of the sand box method to the 
average of the qth power of the number of touching points reveals the multi- 
fractal aspects of the structure of SFB and AP. 
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1. I N T R O D U C T I O N  

During the last decade it has been demonstrated by several theoretical and 
numerical approaches that the main features of far-from-equilibrium 
phenomena can be sucessfully captured through their geometrical aspects. 
The lack of equilibrium and the nonlinearity of such phenomena typically 
result in intricate shapes, and the description of their development should 
be based on the detailed understanding of the underlying geometry. (1) 
Examples falling into this category include a wide selection of fractal 
growth phenomena (2) (aggregation, dendritic growth, dielectric breakdown), 
attractors in dynamical systems (e.g., ref. 3), and a rich variety of patterns 
observed in fluid flows. (4~ 

A large class of patterns occurring in systems far from equilibrium can 
be described in terms of units which fill the space, but have a power-law 
size distribution. Perhaps the earliest example of this kind of geometry was 
discovered by the ancient Greeks, who called the corresponding structure 
Apollonian packing (AP). In this construction nonoverlapping circles of 
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very different radii are used to tile the region bounded by three touching 
circles. Very recently a related model has been proposed to describe 
systems which are made of rotating parts filling the space. (5/In this model 
of space-filling bearings (SFB), cylinders having parallel axes are arranged 
in space in such a manner that in the limiting case the cylinders completely 
fill the space and, in addition, they can roll on each other without slipping. 

The geometry of plane- or space-filling objects (disks, spheres, and 
bearings) has a number of potential applications. For example, oil drops 
on the surface of an immiscible liquid have a number of common features 
with SFB. Another important field to which space-filling models are closely 
related is the hydrodynamics of porous media. (6) Furthermore, the model 
(SFB) in which the condition of frictionless rotation of the cylinders is 
satisfied is expected (5~ to be useful in modeling the structure of turbulent 
flows in the inertial regime (4) or the motion of the matter in seismic gaps. (7~ 

In this paper we carry out a multifractal analysis of the structure of 
space-filling bearings using a formalism which is analogous to the treat- 
ment of fractal measures. (8-1~ The idea of determining the multifractal 
spectrum for the case of space-filling structures made of cylinders is 
motivated by the multiplicative nature of the process which is used to 
generate these structures. In the next section we describe the methods we 
applied to obtain the SFB and the Apollonian packing, as well as the 
procedure used to evaluate the multifractal spectrum. In Section 3 we 
present our results concerning the multifractal behavior of space-filling 
bearings and Apollonian packings. The results are discussed in Section 4. 

2. M E T H O D S  

2.1. A lgor i thm for Construct ing Space-Fi l l ing Bearings 

In this section we discuss the construction of SFB packing, the algo- 
rithm proposed in ref. 5 (see also ref. 18). In the model of space-filling 
bearings whole space is filled with parallel cylinders which roll on one 
another without slipping. In a section perpendicular to the length of these 
cylinders one gets a distribution of circles of many different sizes tangentially 
touching one another and covering the whole plane. One can imagine a 
loop or closed path through the touching points of a set of circles touching 
one another. The condition of slipless rotation demands that two circles 
which are touching each other must rotate in opposite directions. As a 
consequence, there can be only an even number of circles in a loop. (5~ 
Loops having four circles give the simplest example of SFB. 

SFB packing in a strip geometry is clone by an iteration procedure. 
Given one set of circles, one generates the next smaller set of circles using 
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circular inversions. In an inversion around a circle of radius r a point is 
mapped into its image point such that both points lie on the same line 
connecting the center to infinity and their distances d and d'  from the 
center fulfill d. d ' =  r 2. In complex number notation this transformation is 
Z ~ Z p = F2/Z ~, 

We describe here the construction of SFB packing in a strip geometry. 
The whole packing is periodic and a specific unit repeats at regular inter- 
val. One starts with two horizontal infinite lines at unit distance apart and 
places two seed circles A and B touching each other and the top and bot- 
tom lines, respectively. These two lines can be thought of as two circles of 
infinite radii touching at infinity and together with the seed circles A and 
B they form the initial fourfold loop of four circles. The whole SFB packing 
is produced by the two trees of circles generated from these two seed 
circles. All four loop packings on a strip are divided into two families. (5) In 
the first family the sum of the radii of A and B is greater than the strip 
width and in the second family it is equal to the strip width. In the first 
family there are an infinite number of ways one can fill a strip. Each mem- 
ber of this family is characterized by two nonnegative integer parameters n 
and rn. Given the values of n and rn, one finds a set of constants: namely, 
R A and Re, the radii of the seed circles A and B; r A and r e, the radii of 
the inversion circles corresponding to A and B; and the period 2a/5) The 
values of these constants depend on n and m through the following 
algebraic equations(S): 

Zn = COS 2[g/(n + 3)] 

a - - 2 ~ Z n - ~ - Z m - - 1  

r 2 - z  . . . .  / ( Z . + Z m - - 1 )  A,B - -  

2 R  A =rA,2 2Re = r~ 

(1) 

(2) 

(3) 

(4) 

% 

a 2a 3a 4a 5a 6a 

Fig. 1. Construction of space-filling bearings. 
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We describe here the algori thm for the generation of  the member  n = m = 0, 
for which a = 1 / ~ ,  R A  = Re = R = 2/7, and rA = re  = 2 / X / 7 .  

The trees of circles following from the seed circles A and B are inde- 
pendent of each other. Therefore we construct  the A tree and B tree 

�9 separately and superpose them (see Fig. 1). The seed circle A is placed on 
the strip touching the top line. We fix our  x axis on the bo t tom line and 
y axis passing through the center of the A circle. In the first generation, 
circle A is inverted a round  an inversion circle of radius r A centered at the 
point (3a, 0) to get the second circle. In the second generation both these 
circles are inverted at the point  (4a, t)  to generate two more  circles. In the 
third generation all these four circles are inverted at the point  (5a, 0) to 
generate another  four circles and the process is continued to generate the 

(a) 

\ L 

Fig. 2. (a) A typical picture obtained in the course of generating space-filling bearings 
including the first five steps of the construction (2048 circles). (b) The corresponding set of 
4096 touching points. 
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Fig. 2. (Continued) 

A tree. Next one places the seed circle B with the center at (a, R) and then 
constructs successive images by inverting at the points (4a, 1), (5a, 0), 
(6a, 1), and so on and thus the B tree is produced. Finally, all circles are 
shifted; depending on the generation they are produced by proper transla- 
tions to be within x = 0 and x = 3a (see Fig. 2a). 

To generate the touching points, we use the fact that the touching 
points are mapped into touching points. Therefore, we start, for seed circle 
A, with two touching points at (0, 1) and (a/2,  1/2) and these points are 
successively inverted at alternate points at the bottom and top to produce 
the tree of touching points. Similarly one gets touching points generated 
from the seed circle B which are at (a, 0) and (3a/2, 1/2). Finally, all points 
in one generation are shifted to get them in the region within x = 0 and 
x = 3a. The resulting picture is shown in Fig. 2b for 4096 points. 
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The number of circles generated at the kth  generation from one seed 
circle is 2 k. These circles have a distribution of radii. The minimum radius 

" k at the k th  generation scales as 2mi ~ and the maximum radius scales as ,~ . . . .  
where 2ra in=  1.883 and for 2ma x convergence is poor "and seems to 
approach 1. 

2.2. Algorithm for Generating Apollonian Packings 

For any set of three circles of radii r l ,  r2, and r 3 which touch one 
another one gets the radius of a fourth circle which touches the three circles 
and enclosed by them, using the formula (j~) 

(1 
- = - + - +  + 2  + + (5) 
r rl r2 r3 r~r2 r2r3 r3 r l /  

The coordinates of the center are then found using coordinate geometry. 

Fig. 3. A typical picture obtained in the course of generating an Apollonian packing. The 
first six steps of the construction is shown (1096 circles). 
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Fig. 4. The set of 3279 touching points corresponding to Fig. 3�9 

Here we start with three circles of radii 1, 2, and 3 which touch 
one another. A curved triangle is formed and we place a fourth circle 
on it. With the fourth circle we have three curved triangles and we start 
generating other circles in these three regions in the form of a Cayley tree 
of coordination number three (see Fig. 3). In the first generation we have 
one circle, the fourth circle mentioned above. In the second generation we 
have three more circles in the three curved triangles and so on. We use 
Martin's backtracking algorithm (12) to exactly enumerate all circles 
produced up to some level of generation�9 Proper care has been taken to 
decide the left, front, and right directions in local environments�9 The set of 
touching points in Apollonian packing is shown in Fig. 4. 

The number of circles generated at the kth generation from the seed 
circle is 3 ~. These circles have a distribution of radii. The minimum radius 

--k at the kth generation scales as •min, where 2mi . is g +  x/-g' where g is the 
golden mean. (13) In the Cayley tree structure the branch which always turns 
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left (right) produces the minimum-radii circles. These radii are obtained by 
using the radii of the last three parent circles and Eq. (5). The maximum 
radius decreases with the generation number k as k 2.(H) 

2.3. Ca lcu la t ion  of the  Mu l t i f r ac ta l  S p e c t r u m  

In a standard multifractal analysis (14) a grid of lattice constant ! is put 
over the fractal on which the fractal measure is defined and the amount of 
measure p in the boxes of the grid is determined. Then, from the expression 

~pq~l(q l~Dq (6) 
i 

the infinite hierarchy of exponents can be calculated. 
To characterize the multifractal aspects of the structure of a fractal we 

need to define an appropriate measure. In the case of a geometrical object 
a natural choice is the Lebesgue measure of the part of the structure in the 
given region. (15~ For  the fractals studied in this paper this paper this choice 
would correspond to the total length of the circles which are within a box 
of linear size l. Of course, this could be carried out only for a construction 
with a finite number of iteration steps k, since in the k --* oe limit the length 
in each finite part of the fractal becomes infinitely large. 

For  practical reasons, however, we choose another quantity, which is 
the number of touching points within a box. It is considerably easier to 
calculate this quantity, and it provides a basis for an appropriate measure 
since in the k--* ov limit the set of touching points and the fractal itself 
coincide. Thus, we define our measure as Pi = mi(l)/mo, where rn~(1) is the 
number of touching points in the ith box of size l and m o is the total 
number of touching points in the structure. 

Therefore, our method will describe the multifractal nature of the 
density distribution of the touching points in space-filling bearings and 
Apollonian gaskets. The most efficient way to calculate the related 
generalized dimensions Dq is based on the sand-box method in which the 
average of the qth moments of the distribution of Pi values is determined 
for boxes of varying sizes centered at randomly selected points belonging 
to the structureJ 16) We shall use circles of radii r instead of boxes. 
Choosing the centers randomly and taking an average over the observed 
rni does not correspond exactly to Eq. (6), since in this way the places with 
a higher density of touching points are represented with a larger weight. 
Correspondingly, instead of (6) the following expression has to be used: 

Zq(r)=~(mi(r)~q-1;~r(q-1)Dq (7)  

\ k  mo / / 
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When using the above equation, the condition ?'min ~ r ~  1 has to be 
satisfied in order to obtain reliable data. This method has been successful 
in demonstrating the multifractal geometry of asymmetric Cantor  sets (16~ 
and diffusion-limited aggregates. (17) 

If the Dq values are known, the multifractal spectrum f(c~) as a 
function of the local mass exponent ln(mi/mo)/ ln  r can be calculated using 
the equations (9'1~ 

(q - 1) Dq = q e ( q ) - f ( c ~ ( q ) ) ,  e(q)  = (d/dq)[(q - 1) Dq] 

0 

- 1  

I 

~" - 2  

f-i 

o 
'--~ - - 4  

- 5  

I I I I I I I I I I I 

- 6  ' ' 
- 6  - 5  - 4  - 3  - 2  - 1  0 

l og  r 

Fig. 5. The multifractal scaling of the distribution of the touching points demonstrated for 
the construction shown in Fig. 2b. The generalized dimensions Dq c a n  be determined from the 
slopes of the straight lines fitted to the data on the interval - 2.3 < log r < -0 .6  for q < 0 and 
on the interval - 4  < log r < -0.6 for q ~> 0. 
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3. RESULTS 

3.1. Dq Spectrum for Space-Filling Bearings 

The generalized dimensions Dq associated with the multifractal scaling 
of the distribution of touching points in space-filling bearings were 
calculated for a structure obtained after k = 9 steps of the iteration 
procedure (leading after four steps to Fig. 2b). This object had 1,048,576 
touching points and 10,000 of these were selected randomly as centers for 
the circles within which the mass (the number of touching points) was 
determined. The results are shown in Fig. 5, where log gq(r)/(q-1) is 
shown against logr. Multifractality is indicated by parts of the curves 
having different slopes. For a structure with other parameter values the 
shape of the Dq spectrum is qualitatively the same, but the actual Dq values 
can be different. 

3 ~ I ' I i I t I i 

o 
| 

I 

I 

�9 e o 

1 t I, ,t I I, I 
- 5  - 3  - 1  1 

q 
The dependence of the generalized dimensions Dq 

for SFB. 

3 5 

Fig. 6. on q as calculated from Fig. 5 
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The scaling is not satisfied for the full region of the r values, in 
accordance with the criterion that r has to satisfy rmin ~ r ~ rmax in the 
scaling regime. There is a simple reason for the global behavior of the 
curves: all of them have to start and end up in the same point, since for rmi n 
each circle contains only a single touching point, while for a radius equal 
to the system size each circle contains all of the points in the structure. 
Then, the curves may have straight parts with different slopes only if they 
depart from each other in a manner which is shown in Fig. 5. 

The multifractal spectrum Dq is obtained by determining the slopes of 
the straight parts of the plots in Fig. 5. Our estimates are shown in Fig. 6. 
This figure has a remarkable feature: The Dq values for strongly negative 
values of q are larger than d =  2, which is the embedding dimension. This 
question will be discussed later. 
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Fig. 7. 

l o g  r 

The structure of SFB is monofractal  if all of the circles down to a cutoff radius are 
included. In this case the slopes of the plots are approximately equal. 
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There  is one more  interest ing feature of the mult i f racta l  analysis  of 
SFB. This is re la ted to the type of cons t ruc t ion  where all circles are 
included which have a radius  larger  than  a lower cutoff  rad ius  rmi n- 
Obvious ly ,  in this case circles from a wide selection of generat ions  occur  in 
the final conf igura t ion  even if the smallest  circle is genera ted  after only a 
few i terat ions.  In  such a s t ructure  the big empty  regions tend to be filled 
up with circles coming  from subsequent  i te ra t ions  (wi thout  including the 
circles with radi i  less then rmin). As a result,  the mul t i f racta l  na ture  of the 
geomet ry  is lost, as is demons t r a t ed  in Fig. 7, where the scaling of Zq is 
shown for this case. The monof rac ta l i ty  of the s t ructure  is indica ted  by  the 
fact tha t  the curves have the same slope. 
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- 2  
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~ - 3  
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; ~ - 4  
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- 5  

- 6  

- 7  - 6  - 5  - 4  - 3  - 2  -1  0 
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Fig. 8. The multifractal scaling of the distribution of the touching points demonstrated for 
the construction shown in Fig. 4. The generalized dimensions D o can be determined from the 
slopes of the straight lines fitted to the data on the interval -3.1 < log r < -0.6 for q < 0 and 
on the interval -4.6 < log r < -0.6 for q ~> 0. 
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3 . 2 .  Dq S p e c t r u m  f o r  t h e  A p o l l o n i a n  P a c k i n g  

In this section we present the results obtained for the scaling of the 
density of touching points in an Apollonian packing. The analysis is 
virtually the same as in the case of space-filling bearings. We start with 
three mutually touching circles of radii 1, 2, and 3. We went up to 12 
generations, producing a total of 797,161 circles with 2,391,483 touching 
points and 10,000 centers were chosen randomly for the multifractal 
analysis. In addition, all of the remarks made for SFB concerning the 
special nature of the structures generated by a plane-filling fractal 
algorithm are valid for AP. 

The multifractal nature of the Apollonian packing shown in Fig. 4 is 
demonstrated in Fig. 8, where log gq(r)/(q-1) is plotted versus log r for 
various q. 

The Dq spectrum calculated from Fig. 8 is shown in Fig. 9. 
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Fig. 9. The multifractal spectrum Dq for the touching points of Apollonian packing. 
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4. D ISCUSSION 

We have studied two types of plane-filling fractal structures made of 
circles; one of them (AP) is more than 2000 years old, the other one (SFB) 
has been proposed very recently. Our calculations show that the complex 
structure of these constructions is characterized by a spectrum of 
generalized dimensions. 

The construction of the above fractals represents an iterative process 
in which different lengths are involved in a multiplicative manner. As a 
result, the distribution of the characteristic points (touching points) within 
the structures at a given stage of the process has multifractal properties, 
and a spectrum of q dependent generalized dimensions Dq can be 
associated with this distribution. The actual Oq values depend on the 
choice for the parameters of the models, but the qualitative behavior is the 
same in all cases. One of the surprising results is that Dq can be larger than 
d, where d is the embedding dimension. For a growing fractal it has been 
argued that Oq ~ d, since D oo = 0~max and e can be considered as a local 
fractal dimension. The present model is, however, qualitatively different 
from particle growth models. It is generated by iterations, within a unit 
square. 

More importantly, due to the nature of the construction, there exists 
no such growth process which would correspond to the blownup version of 
space-filling bearings. To illustrate this point, let us mention that in a 
growth model the already generated "inner" part is always frozen, and in 
the subsequent stages the new particles are added only to the outer parts. 
In the case of SFB and AP such a statement cannot be made; the newly 
generated parts always interpenetrate with the old parts. Correspondingly, 
the density of the touching points may exhibit arbitrary singularities in 
analogy with the distribution of return points in chaotic maps. (3) 

We have also found that multifractality is absent in those versions of 
the models where all circles are included which have radii larger than some 
rmin(k) even if they appear at stages beyond the kth generation. The models 
of plane-filling disks have rich geometry and further investigations are 
expected to reveal additional interesting properties. 
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